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Abstract

Simulations of heterogeneous agents models with boundedly rational agents and
multiple markets in the style of Krusell and Smith (1997, 1998) require solving for
market-clearing conditions at each period to determine temporary equilibria. Existing
solution procedures can be computationally intensive, especially in settings with a
high-dimensional state space and a large number of agents. We suggest a new method
for approximating temporary equilibria in heterogeneous agents models that offers
a speedup of multiple orders of magnitude compared to a conventional benchmark.
We demonstrate the effectiveness of our procedure by applying it to a model with
heterogeneous boundedly rational agents featuring a large idiosyncratic state space.

JEL Classifications: C63; C68

Keywords: Heterogeneous agents; equilibrium approximation; policy function aggregation;
market clearing

∗This work benefited from access to the University of Oregon high performance computing cluster,
Talapas. All errors are our own.

1



1 Introduction

When simulating heterogeneous agents (HA) economies in the style of Huggett (1993) and

Aiyagari (1994) augmented with aggregate shocks, it is necessary to solve for the temporary

equilibrium (TE) every period. In a TE, agents’ decisions and prices are simultaneously

pinned down by market clearing conditions – in turn, these outcomes determine aggregate

dynamics. Practically, this involves finding agent-level policy rules as a function of individual

and aggregate states, along with prices, then solving for equilibrium prices by applying a

sequential root solver to a set of market clearing conditions that depend on the aggregate

of individual policy rules as a function of aggregate states and prices (Bakota, 2022). As

described in Den Haan et al. (2010), the repeated aggregation of individual policy rules

during the computation of TE in a simulation may take a long time, even when using the

standard projection methods described in Judd (1992, 1996) to approximate individual policy

functions. This issue is most pertinent to HA models with multiple markets and boundedly

rational agents, such as those with endogenous labor supply (Krusell and Smith, 1998; Chang

and Kim, 2006, 2007; Krusell et al., 2010), as well as those with multiple assets (Krusell and

Smith, 1997).

We suggest a new approach to approximating TE in HA models that bypasses a

redundancy in conventional projection methods. Once the policy rules are approximated

using a set of basis functions over individual states, aggregate states, and prices, it is possible

to perform a single aggregation over the individual states each period. In doing so, we

construct an approximation to the aggregate demand functions, conditional on the current

aggregate states, as summarized by a vector of coefficients for the basis functions over prices.

We find that our approach significantly outperforms existing aggregation methods in terms

of execution speed.
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2 Methodology

Suppose that we aim to find the TE of an HA economy featuring bounded rationality.

We model this as a set of demand functions x̃(z, P, Y ), which depend on individual states z

(including beliefs) with distribution Ω, prices P , and a finite-dimensional vector of observable

aggregates Y .1 The aggregate state, Z = (Ω, Y ), follows a law of motion Z ′ = G(Z, ν ′),

where Z ′ and ν ′ denote the realization of the aggregate state and shocks in the next period,

respectively. Our objective is to find the set of market-clearing prices P ∗ given Z, such that

X̃(P ∗, Z) = X(P ∗, Z) , (1)

where

X̃(P,Z) ≡
∫
x̃(z, P, Y ) dΩ(z) (2)

is aggregate demand and X is aggregate supply.

We use the model developed by Evans et al. (2023) with the notation adapted to the above

setting to tangibly illustrate the challenge of solving the general class of TE shown in Eq. (1).

We then present the conventional approach to solving for the TE of such multi-market HA

economies, and introduce our proposed method as an extension of a basis function approach

to preapproximating policy rules. Finally, we compare the execution time of our approach

with that of the conventional TE aggregation method.

1For example, in the Krussell-Smith model, Y contains the first moment of the distribution of assets.
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2.1 Example Environment

Let time be discrete. The economy is populated by a continuum of agents such that a given

agent is endowed with a unit of labor per period and derives utility from consumption

c and leisure l according to the instantaneous utility function u(c, l). Each agent has

a unique effective unit of labor for each unit of nominal labor supplied and receives a

corresponding wage that can be separated into the following two components: (1) a common

aggregate component w, and (2) an idiosyncratic efficiency component ε distributed across

the population. We assume {ε} to be a Markov process with time-invariant transition

function Π distributed i.i.d. across agents. In each period, an agent can trade one-period

claims to capital for net return r, limited by the exogenous borrowing constraint a. The

goods and factor markets are assumed to be competitive.

In period t, an agent holds claims a, experiences idiosyncratic efficiency ε, and faces factor

prices P = (r, w). Additionally, an agent has a vector of beliefs ψ ∈ Rn, which comprises

coefficients of the forecasting model used to form expectations of next period’s shadow price

λ′, where the current shadow price is defined as

λ(a, ε, ψ) ≡ (1 + r)uc(c(a, ε, ψ), l(a, ε, ψ)) . (3)

The set of individual states z = (a, ε, ψ) has a distribution Ω.

The representative firm rents capital k at the real rental rate r+ δ, hires effective labor n

at the real wage w, and produces output under perfect competition using CRTS technology

θf(k, n), where δ is the capital depreciation rate. θ is a stationary process that affects total

factor productivity with dynamics given by θ′ = ν ′θρ, where |ρ| < 1 and ν ′ is i.i.d. with a

log-normal distribution. There are no capital installation costs. Profit-maximizing behavior
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by the firm implies that factors earn their respective marginal products:

w = θ fn(k, n) and r + δ = θ fk(k, n) . (4)

The aggregate state is Z = (Ω, Y ), where Y is a vector of observable aggregates, including

θ, that all agents observe in the current period and could use to condition their forecasts of

λ′. The transition dynamics of the aggregate state is governed by Z ′ = G(Z, ν ′), where ν ′ is

the total factor productivity shock of the next period.

The individual consumption, labor, and claims demands of agents are functions of

idiosyncratic states, prices, and observable aggregates. We may express the individual

demand function as x̃(z, P, Y ) = (c̃(z, P, Y ), ã(z, P, Y ), l̃(z, P, Y )), which satisfies the

following conditions:

uc(c̃(z, P, Y ), l̃(z, P, Y )) ≥ β λ̃e(ã(z, P, Y ), ε, ψ, Y ) (5)

and ã(z, P, Y ) ≥ a, with c.s.

ul(c̃(z, P, Y ), l̃(z, P, Y )) = uc(c̃(z, P, Y ), l̃(z, P, Y ))w (6)

ã(z, P, Y ) = (1 + r)a+ w · ε · (1− l̃(z, P, Y ))− c̃(z, P, Y ) , (7)

where λ̃e represents an agent’s forecast of λ′ based on Y . Specifically, each agent forms a

forecast using the following perceived law of motion (PLM):

log λ̃e = log λ
e
+ ⟨ψ, Y ⟩ , (8)

where ⟨·, ·⟩ is the standard inner product on Rn, and λ
e
is a time-t forecast of λ′ in a

corresponding stationary recursive equilibrium without any aggregate risk. We may express

λ
e
(ā(a, ε), ε) =

∫
λ(ā(a, ε), ε′)Π(ε, dε′) , (9)
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where ε′ is an individual efficiency shock in period t+1, ā is the stationary equilibrium level

of claims in the current period, and λ(a, ε) = (1 + r)uc(c(a, ε), l(a, ε)) such that c, l, and

r represent the stationary equilibrium levels of consumption, labor, and the capital rate of

return, respectively.23

This brings us to the principal challenge addressed in this paper. Given agent-specific

states z = (a, ε, ψ) and observable aggregates Y , conditions (5)–(7) determine agents’

decision rules as a function of prices P = (r, w). However, the realized value of prices

and other endogenous aggregates is determined by market clearing, i.e., TE. Mechanically,

this determination requires tracking the evolving distribution of agent-specific states. TE

imposes r = θfk(k, n) − δ and w = θfn(k, n), where (k, n) is determined by the following

market clearing conditions:

k =

∫
a · Ω(dz) and n =

∫
(1− l̃(z, P, Y )) Ω(dz) . (10)

Notice that n depends on the agent-level policy rules l̃(z, P, Y ), which in turn depend

implicitly on current factor prices P . All must be determined jointly in the TE as a

solution to a system of nonlinear equations. Solving the system necessitates aggregating

over the individual decisions of all agents for each candidate solution (n, r, w), which may

pose a significant computational hurdle in a corresponding simulation with a large number

of agents.

2In essence, we assume that agents’ forecasts of the following period’s shadow price consists of two
components: (1) a rational forecast of next period’s shadow price in a corresponding stationary equilibrium
without aggregate risk; and (2) a boundedly rational forecast of the expected deviation of next period’s
shadow price from its stationary level attributed to variation in aggregate risk, as predicted by variation
in the observed aggregate variables. For an in-depth discussion of this PLM and how agents update their
beliefs, refer to Evans and McGough (2021) and Evans et al. (2023). In this paper – to approximate a TE –
we treat the distribution of ψ over the population of agents as given.

3Giusto (2014) offers an alternative approach to incorporating agent-level bounded rationality in an HA
model.
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2.2 Approximation Methods

We present three distinct approaches to approximating TE in HA models and apply all of

them in our example setting. The first method involves explicitly solving the policy rules

for each individual agent in the simulation and aggregating their respective decisions in

each iteration of the root solver at each period. The second method involves interpolating

agent-level policy rules via basis function approximation at the start of a simulation and

using them in the market-clearing root solver. While pre-computing equilibrium policy

rules could improve performance, we demonstrate that this approach is inefficient in our

boundedly rational multi-market setting as individual policy functions must be aggregated

at each step of the root solver. However, we show that the structure of the interpolated

policy functions allows us to aggregate them only once at the beginning of the period. This

allows us to construct an approximation of aggregate demand conditional on the aggregate

state using the basis functions over prices. In doing so, we eliminate the computational

cost of aggregating the policy functions in each iteration of the root solver. This approach

significantly outperforms the first method in terms of execution time, without suffering from

a notable loss in accuracy.

Method #1 (Naive Global Approximation): Let Ω be approximated with N points

{zi}i∈NN
with corresponding weights {ωi}i∈NN

. The approximation for the demand schedule

X̃(P,Z) ∈ RJ for a given P and Z may be expressed as the following weighted sum:

X̂j(P,Z) ≡
∑
i

ωi x̃
j(zi, P, Y ) , (11)

where x̃ is derived individually for each (zi, P, Y ) tuple, and j = 1, . . . , J is an index for

the set of goods in the economy. Repeating the above approximation for all J goods yields

X̃(P,Z), which can then be used to solve the equilibrium vector of prices P ∗ using the

market clearing condition in Eq. (1).
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Solving the policy functions N times for a given P can be computationally taxing,

especially if N is large. If an M number of steps is required for a root solver to converge

to an approximation of P ∗, then each x̃j has to be recomputed a total of M · N times. In

our application, for a given wage level w and distribution Ω̂ of individual states (a, ε, ψ), we

analytically solve the level of capital k and the return on capital r. Using the above objects,

we then solve the quantity of labor supplied individually by each agent, 1− li, according to

conditions (5)–(7). Averaging these individual labor supply decisions across the set of all

agents, as in Eq. (11), yields the aggregate labor supply nt, as shown in Eq. (10).

Method #2 (Interpolated Global Approximation): This method adds a layer of

approximation to Method 1. Suppose that x̃ is approximated by x̂ via projection, such that

the demand for the j-th good is represented by

x̂j(z, P, Y ) =
∑
k

∑
l

∑
m

cjklmΦz
k(z) Φ

P
l (P ) Φ

Y
m(Y ) , (12)

where ΦP
l , Φz

k and ΦY
m are the basis functions that each depend on prices, idiosyncratic

states, and the aggregate observables, respectively. The coefficients for this approximation,

cjklm, need to be computed only once prior to simulation. The approximation for the demand

schedule X̃(P,Z) may be expressed as the following weighted sum:

X̂j(P,Z) ≡
∑
i

ωi x̂
j(zi, P ;Y ) , (13)

where zi and ωi are defined as before. Once again, Eq. (13) may be used to solve for P ∗ in

Eq. (1).

This approach requires the policy function for the j-th good to be approximated only

once, after which it is inputted into Eq. (13) to compute the sum. However, given a large

N , the sum in Eq. (13) may still take a substantial amount of time to compute. This is

especially true if the vector of idiosyncratic states z is high-dimensional, in which case each
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instance of a precomputed x̂ may take a long time to execute – causing Method 1 to outpace

Method 2.

Method #3 (Fast Approximation): Finally, we present our proposed method. Notice

that substituting Eq. (12) into Eq. (13) yields

X̂j(P,Z) =
∑
i

ωi

∑
l

∑
k

∑
m

cjklmΦz
k(z) Φ

P
l (P ) Φ

Y
m(Y ) , (14)

which can be rearranged by distributing ωi, switching the order of summation, and factoring

ΦP
l in the following manner:

X̂j(P,Z) =
∑
l

ΦP
l (P )

∑
i

ωi

∑
k

∑
m

cjklmΦ
z
k(z)Φ

Y
m(Y ) . (15)

Finally, defining Cj
l (Z) ≡

∑
i ωi

∑
k

∑
m c

j
klmΦz

k(z) Φ
Y
m(Y ) allows us to express Eq. (15) as

X̂j(P,Z) =
∑
l

Cj
l (Z) Φ

P
l (P ) . (16)

With this formulation of X̂, since Cj
l is independent of P , it suffices to compute Cj

l only

once before initializing the root solver to find P ∗. This approach strictly dominates Method

2 by relying on the same initial projections but fewer mappings in the aggregation stage, so

that execution times are lower but the accuracy is identical. More importantly, this method

outpaces Method 1 without much loss in accuracy, as discussed in Section 3.

The execution speed of a TE solver becomes crucial in practice when the dynamic

recursive equilibrium of an HA economy is simulated over multiple periods of time, in other

words, when the TE solver is used repeatedly (Bakota, 2022). For such applications, the

speedup offered by our method is particularly attractive. The case becomes even stronger

in the context of stationary recursive equilibria, in which the idiosyncratic distribution Ω
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is time-invariant – it becomes sufficient to compute Cj
l only once in the initial period of a

simulation, beyond which it can be used in all future periods.

3 Application

In our application, we simplify certain elements of the model for convenience. We fix the

TFP shock to θ = 1, and evaluate the TE given an ergodic distribution of individual states

Ω̂.4

We compare the performance of the described TE solution methods across three

dimensions: (1) the execution time of the aggregation procedure – in other words, the

time it takes to find the sum of individual policy rules given all necessary inputs; (2) the

execution time of the multidimensional mapping characterizing the TE, which needs to be

computed at each step of the nonlinear solver; (3) the execution time of the nonlinear solver

that approximates the set of equilibrium prices. We generate samples of these execution

times and present the corresponding summary statistics in Table 1. Our proposed method

(Method 3) offers significant speed-ups across all stages of the TE solution procedure.

In addition to comparing execution speed, we compare the accuracy with which our

method estimates the aggregate labor supply schedule. In Figure 1, we plot the percentage

deviation of the labor supply schedule approximated using Methods 2 and 3 from that

obtained using Method 1 over a large interval surrounding the steady state wage level.5

We find that our approach offers accuracy similar to Method 1, since the two labor supply

schedules appear to be practically identical.

4In principle, the time and accuracy can depend on θ and Ω, but we found this not to be the case in our
application.

5Note that Methods 2 and 3 must yield the same approximation.
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Method #1 Method #2 Method #3

Aggregation 3.30e-2 4.20e+1 4.00e-6
(2.40e-2) (3.94e+1) (3.20e-6)

Temporary Eq. Mapping 6.11e-2 4.33e+1 3.99e-6
(5.01e-2) (4.32e+1) (3.44e-6)

Nonlinear Solver 6.82e-1 4.86e+2 3.36e-4
(6.57e-1) (4.39e+2) (3.22e-4)

Sample Size 1000

Table 1: Temporary equilibrium solution methods execution times. Note: Mean
execution time in seconds (minimum execution time in parentheses).

Figure 1: Percentage deviation of aggregate labor supply as a function of wage
approximated using Method 3 from that obtained using Method 1. Note: The
steady state wage level is represented by the dashed vertical line.
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