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Abstract

I propose the pass-through impulse response function (PT-IRF) as a novel reduced-
form empirical approach to measuring transmission channel dynamics. In essence,
a PT-IRF quantifies the propagation of a shock through the Granger causality of
a specified set of endogenous variables within a dynamical system. This approach
has fewer informational requirements than alternative methods, such as structural
parameter and empirical policy counterfactual exercises. A PT-IRF only requires the
specification of a reduced-form VAR and identification of a shock of interest, bypassing
the need to either build a structural model or identify multiple shocks. I demonstrate
the flexibility of PT-IRFs by empirically analyzing the indirect dynamic transmission
of oil price shocks to inflation and output via interest rates, as well as the indirect
dynamic effect of monetary policy shocks on output via changes in credit supply.
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1 Introduction

The total effect of any macroeconomic disturbance is the net result of its dynamic

propagation through the economy via a set of transmission channels. Gauging the extent to

which a given channel amplifies, delays, or influences the direction of the effect over different

horizons is of general interest to researchers and policymakers alike. I propose the pass-

through impulse response function (PT-IRF) as a new empirical method enabling flexible

quantification of transmission channels with relatively few informational requirements.

The PT-IRF leverages the insight that in any dynamical data-generating process (DGP)

captured by a reduced-form vector autoregression (VAR), the dynamic propagation of a

shock is governed by the Granger (G-) causality of the endogenous variables in the system.

If a given endogenous variable does not G-cause the collective set of endogenous variables, it

does not influence the dynamic propagation of disturbances. Consequently, the contribution

of a set of endogenous variables to the total effect of a shock is the difference between the total

effect and the impulse response observed when the joint G-causality of these “intermediate”

variables is shut off. The PT-IRF quantifies this difference over a range of impact horizons

as a smooth nonlinear mapping of VAR parameters, allowing for straightforward estimation

and inference using both parametric VAR-based and semi-parametric local projections (LP)-

based methods. This approach extends to nonlinear dynamical DGPs, provided that the

G-causality of the relevant intermediate variables is well-defined. A key appeal of the PT-

IRF is its methodological parsimony – unlike alternative approaches to quantifying dynamic

transmission channels (further discussed below), it does not require specifying a structural

model or identifying multiple distinct structural shocks. The PT-IRF can be applied to

yield provisional insights regarding the strength and dynamics of a channel when alternative

causal approaches are infeasible due to strict informational barriers, such as the inability

to identify the required number of shocks and/or lack of knowledge on the structure of the

relevant transmission mechanism.
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I illustrate the applicability of the PT-IRF by studying the effect of an unexpected

change in monetary policy on output via its transmission through the lending channel – a

subset of the greater monetary transmission mechanism. The empirical PT-IRF approach

involves the following steps: (1) One must first specify a reduced-form VAR containing all

relevant endogenous variables to capture macroeconomic dynamics. The endogenous vector

must include the necessary response variable, along with at least one transmission variable

capturing time-series variation in bank credit supply (the transmission medium of interest).

(2) A monetary policy shock can be identified using a valid internal, external, or combined

identification scheme – the PT-IRF does not restrict the researcher to any specific shock

identification method. (3) The model parameters can be estimated using either frequentist or

Bayesian methods. (4) The slope and impact parameter estimates are mapped to a standard

IRF, as well as a restricted IRF based on a transformed companion matrix in which the

lag coefficients of the credit supply variable(s) are mapped to zero without altering other

parameter estimates. The restricted impulse response captures the effect of a monetary

policy shock with the influence of its dynamic propagation via credit supply partialed out,

quantified by the IRF of the shock in a subsystem of the full model with strict G-non-

causality of credit supply variable(s). Since the standard impulse response quantifies the

total effect of the shock, the difference between the standard and restricted IRF captures the

partial effect of a monetary shock on output via its influence on bank credit supply – this is

the PT-IRF. (5) The resulting PT-IRF is a smooth mapping of VAR parameters, therefore

common bootstrap procedures for IRF estimation can be applied without any additional

modifications beyond mapping the estimated VAR parameters to the PT-IRF instead of an

IRF at each step of the bootstrap. In a Bayesian setting, the same mapping can be performed

with parameters drawn at each step of a sampler to generate credible sets.

An alternative approach to measuring the strength and nature of a transmission channel

involves estimating a structural model and comparing the effects of a shock under two

different parameter calibrations: one in which a channel of interest is present, and another in
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which the channel is shut off through a corresponding set of structural parameter restrictions.

This structural methodology leverages the “Lucas program” approach to counterfactual

analysis, as described in Christiano et al. (2005) and McKay and Wolf (2023). Although

this methodology is highly flexible, an inherent downside is the required commitment

to a particular structural model and corresponding parameterization. With regards to

specification, the PT-IRF relies solely on the more parametrically-agnostic assumption

that the dynamics in a given DGP can be accurately captured by a reduced-form VAR

– a common approach in empirical macroeconomics (Stock and Watson, 2016; Ramey,

2016). I demonstrate an equivalence between the Lucas program and PT-IRF approaches

to dynamic transmission quantification. This equivalence occurs when a set of restrictions

on the primitive parameters of a structural model (related to a transmission mechanism of

interest) can eliminate the G-causality of a corresponding intermediate endogenous variable

in the VAR representation without affecting other reduced-form slope or contemporaneous

impact parameters.1 An empirical PT-IRF with such a corresponding structural mapping

has a causal interpretation. Otherwise, PT-IRFs provide a mechanical description of shock

propagation within a single equilibrium captured by an empirical reduced-form VAR.

Another approach to measuring dynamic transmission channel effects involves performing

empirical counterfactual simulations inspired by Sims and Zha (2006). This method

compares a standard impulse response to that of a counterfactual in which an intermediate

variable is held constant by a sequence of corresponding exogenous shocks following the

initial shock of interest. For example, Bernanke et al. (1997) quantifies the contribution

of the systematic portion of monetary policy to the net dynamic effect of oil price shocks

1As an example, consider a model in which the lag coefficients of the intermediate endogenous variable(s)
are all scaled by the same structural parameter representing the presence of some mechanism. Suppose this
parameter does not function into any other reduced-form parameter in the model. A counterfactual in which
the corresponding mechanism is not present involves setting the structural parameter equal to zero, which
also eliminates the G-causality of the intermediate variable(s) from the model. The IRF to some shock in this
counterfactual model is equivalent to the restricted IRF. Subtracting this counterfactual impulse response
from the standard IRF yields a PT-IRF measuring the contribution of the mechanism to the total effect of
the shock.
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on key macroeconomic variables; Bachmann and Sims (2012) studies the role of consumer

confidence in the dynamic transmission of fiscal policy shocks to the real economy. A

recent refinement of this methodology in a policy counterfactual setting by McKay and

Wolf (2023) shows the need to identify a potentially large set of news shocks in addition to

a standard contemporaneous policy shock to ensure full robustness to the Lucas critique.2

These strict requirements for establishing causality can be prohibitive in cases where it is

difficult to identify multiple news shocks to the intermediate variable of interest in addition to

a contemporaneous exogenous shock, in which case the traditional Sims-Zha approach loses

its interpretability. By comparison, the PT-IRF does not necessitate the identification of any

shocks to the intermediate variable(s) of interest – instead, it simply requires access to time-

series data on (proxies of) those variables. The PT-IRF then leverages the estimates of the

G-causality of the intermediate variable(s) to quantify the extent to which the corresponding

channel of interest contributes to the propagation of some shock over a specified horizon.3 In

practice, the PT-IRF approach is descriptive of propagation dynamics within an equilibrium

evidenced by a given sample, but can (1) be applied to a variety of intermediate variable

beyond policy variables, (2) accommodate multiple intermediate variables simultaneously,

and (3) accommodate potential nonlinearities, while being easily implementable.

Outline. Section 2 of the paper builds an intuitive interpretation of the parametric

composition of a PT-IRF in the case of a single-lag linear VAR, extends this interpretation

to a multi-lag linear VAR, and finally presents a general formulation of the PT-IRF for

potentially multi-lag nonlinear VARs. Section 3 demonstrates a potential equivalence

between the PT-IRF and Lucas program approaches to measuring transmission dynamics

using a simplified DSGE model. Section 4 illustrates the empirical flexibility of PT-IRFs

2McKay and Wolf further demonstrate that the informational requirements of such counterfactual
simulations increase in direct proportion to the length of the specified response horizon.

3In the case of measuring the contribution of the lending channel to total monetary transmission, it
is notoriously challenging to identify exogenous shocks to credit supply. Therefore, the empirical policy
counterfactual approach is infeasible. However, the PT-IRF can condition on a proxy for credit supply,
such as the excess bond premium (EBP) (Gilchrist and Zakraǰsek, 2012), to quantify the propagation of a
monetary shock via the EBP as an endogenous variable in a VAR.

5



by estimating the transmission of various macroeconomic shocks via channels examined in

the literature using linear VARs. Specifically, I study the transmission of oil price shocks

to output and inflation via interest rate dynamics, and the transmission of monetary policy

shocks to output via credit supply dynamics. Section 5 elaborates on methods of estimating

and conducting inference on PT-IRFs using frequentist VAR- and LP-based bootstrap

procedures. Section 6 concludes the paper with a brief discussion of potential applications

of PT-IRFs beyond the illustrative examples.

2 Methodology

In this section I define the concept of a PT-IRF starting with the simple case of a linear

VAR(1), proceeding to the more general case of a linear VAR(p), and finally generalizing to

a stationary Markov process.

2.1 Linear VAR(1)

Consider the following VAR(1) process:

yt+1 = α + Ayt +Bεt+1 , (1)

where yt = (y1t, . . . , yNt)
′ is a vector of N endogenous variables, εt = (ε1t, . . . , εKt)

′ is a vector

of K structural shocks, α is an intercept vector, and A ∈ RN×N and B ∈ RN×K are the lag

coefficient and contemporaneous impact matrices, respectively. Our goal is to interpret the

linear VAR(1) as a directed weighted graph through which shock impulses travel over time,

use this alternative interpretation of a linear VAR(1) to reinterpret the familiar IRF, and

finally define the PT-IRF within the given context.
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Firstly, notice that the ik-th entry of B represents the contemporaneous effect of the k-th

structural shock on the i-th endogenous variable. Refer to Figure 1 for an illustration of the

special case of a 3-dimensional VAR(1).

y1 y2 y3

εk

Time: t

Time: t

B1k B2k B3k

Figure 1: Contemporaneous effects of a structural shock εk on a 3-dimensional
VAR as a weighted directed graph. Note: Notice that for each Bik, i indexes the
affected variable, while k indexes the shock of origin.

Next, notice that Aij represents the one-period-ahead effect of the j-th variable on the

i-th variable. If we think of A as the adjacency matrix in the context of a directed weighted

graph, where each endogenous variable at a given point in time is a vertex, then Aij may

also be interpreted as the intensity of the travel path of a signal from variable j at time t to

variable i at time t+ 1. Once again, for an illustration of the above in the special case of a

3-dimensional VAR(1), refer to Figure 2.

Lastly, we can simply put the above interpretations of B and A together to formulate a

VAR(1) as a directed weighted graph, which allows us to trace the propagation of a shock

through the system and assess its impact on some variable of interest at a future point

in time. Each possible path of a given shock εk has a corresponding weight equal to the

product of the weights of each of its edges, determined by the contemporaneous impact and

lag coefficient matrices. An IRF is simply the sum of the weights of all paths that ultimately

reach a destination node corresponding to a variable of interest yi at a given horizon h.

Refer to Figure 3 for an illustration of the one-period-ahead propagation of a shock through

a 3-dimensional VAR(1).
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yj

y2y1 y3Time: t+ 1

Time: t

A1j A2j A3j

Figure 2: One-period-ahead effects of a change in the variable yj of a 3-dimensional
VAR as a weighted directed graph. Note: Notice that for each Aij , i indexes the
next period’s destination variable, while j indexes the variable of origin.

A PT-IRF is the sum of weights associated with the subset of the above-mentioned

paths that pass at least once through some intermediate variable of interest yj – if a given

path never passes through yj, then it is irrelevant in gauging the role of yj as a transmission

medium for a shock in the system. For example, the one-period-ahead pass-through response

of yi with respect to y1 as an intermediate variable for the transmission of some shock εk in

the case illustrated by Figure 3 is equal to Ai1B1k – the weight of the only path that allows

for the shock to pass through y1 at least once before reaching its destination. If we were

interested in the union of y1 and y2 as a transmission medium for εk, then the PT-IR would

be Ai1B1k + Ai2B2k – the sum of the weights of the two paths that allow the shock to pass

through either y1 or y2 at least once before reaching its destination. The same logic can be

extended to h-period-ahead impulse responses, for h strictly greater than zero.

It can be shown that in the case of a VAR(1), the h-period-ahead impulse response (IR)

with respect to some vector of shocks ε may be expressed as

IR(h, ε) = AhB ε . (2)

It can also be shown that for h > 0, the corresponding pass-through impulse response
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y1 y2 y3

yi

εk

B1k B2k B3k

Ai1 Ai2 Ai3

Time: t

Time: t

Time: t+ 1

Figure 3: The propagation of an impulse originating at the k-th shock with the i-th
variable as its destination, one period ahead. Note: The one-period-ahead impulse
response of yi with respect to a unit shock to εk equals the sum of the weights of
all three paths leading to yit+1: Ai1B1k +Ai2B2k +Ai3B3k.

(PT-IR) with intermediate variable yj is algebraically equivalent to

PT-IR(h, j, ε) ≡
(
Ah − Ãh

−j

)
B ε , (3)

where Ã−j is identical to A across all but the j-th column, which is set equal to the zero

vector. In the case that h = 0, the PT-IR always equals to zero due to the fact that

contemporaneous pass-through of any given shock occurs purely through the impact matrix:

PT-IR(0, j, ε) ≡ 0 . (4)

2.2 Linear VAR(p)

Consider the following VAR(p) process:

yt = α + A(L)yt +Bεt , (5)
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where all familiar objects are defined as before, and A(L) is a lag polynomial of the form

A(L) =

p∑
i=1

AiL
i , (6)

such that each Ai is a lag coefficient matrix corresponding to yt−i. Suppose we aim to derive

PT-IR(h, j, ε) for this system. The goal is once again to sum the weights associated only

with those paths that originate at the shock of interest, pass through yj at least once over

the given horizon, and end at the response variable of interest h periods ahead.

Suppose we represent a linear VAR(p) in state-space form as a VAR(1) with companion

matrix Φ and augmented contemporaneous impact matrix Γ =

[
B′ 0

]′
. Then for h ≥ 0

the corresponding PT-IR with intermediate variable yj may be expressed as

PT-IR(h, j, ε) ≡
(
Φh − Φ̃h

−j

)
Γ ε , (7)

where Φ̃−j is the companion matrix of a modified version of the process described in Eq. (5)

with the i-th lag coefficient matrix restricted to equaling

Ãi,−j ≡
[
a⃗1 . . . a⃗j−1 0⃗ a⃗j+1 . . . a⃗N

]
, (8)

where a⃗m denotes the m-th column of Ai. Notice that Φ̃
h
−j Γ ε captures the impulse response

of a shock for a restricted version of the given linear VAR(p) in which the G-causality of

the j-th endogenous variable is completely removed (Kilian and Lütkepohl, 2017) – all paths

passing through the j-th variable are assigned a weight of zero. Therefore, PT-IR(·) sums

the weights of only those paths that pass through the j-th variable, which can be interpreted

as the impulse response of the system attributable to the G-causality of the j-th endogenous

variable.
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2.3 General Formulation

Let yt = (y1t, . . . , yNt)
′ ∈ RN and εt = (ε1t, . . . , εKt)

′ ∈ RK such that yt is determined by the

stationary Markov process

yt = G(εt, yt−1; θ) , (9)

where t ∈ N+ denotes time, G : RK × RN → RN is a mapping conditioned on a set of

parameters θ, and εt is a vector of zero-mean i.i.d. shocks. We may define the h-step

impulse response of the given system with respect to some shock vector ε ∈ RK as the

following difference between two forecasts ∀h ∈ N:

IR(t, h, ε) ≡ E [yt+h | εt = ε, yt−1, θ]− E [yt+h | εt = 0, yt−1, θ] , (10)

where the conditional expectation operator E[· | ·] represents the best mean squared error

predictor.

The pass-through impulse response of the system with respect to the same shock is once

again defined as

PT-IR(t, h, j, ε) ≡ IR(t, h, ε)− ĨR(t, h, j, ε) , (11)

where ĨR denotes an object similar to that in Eq. (10), but applied to a transformed version

of the process expressed in Eq. (9) in which the G-causality of the j-th variable in the system

is removed. More specifically, we may define

ĨR(t, h, j, ε) ≡ E
[
Ỹt+h | εt = ε, Yt−1, θ

]
− E

[
Ỹt+h | εt = 0, Yt−1, θ

]
, (12)

where ỹt ≡ G(εt, Ĩjyt−1; θ), such that Ĩj is the identity matrix with the j-th diagonal entry
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set equal to zero. In other words, ỹt is generated by the same process as yt, but with the

influence of the lags of the j-th variable removed from the data generating process (DGP).

Notice that Ĩj removes the G-causality of the j-th variable in the system, thus allowing

for ĨR(·) to isolate the impulse response to a shock without accounting for its transmission

through yjt. Therefore, subtracting ĨR(·) from IR(·) yields the impulse response associated

with the transmission of a shock through yjt.

3 Structural Equivalence to the Lucas Program

The structural interpretation of a PT-IRF depends entirely on the mapping between the

primitive parameters of a model and the G-causality of the transmission medium of interest.

ĨR(·) can be obtained as a standard impulse response after restricting the structural

parameters such that the G-causality of the intermediate variable(s) is eliminated from the

model dynamics. The PT-IRF can then be obtained by subtracting this counterfactual

impulse response from the true impulse response to a given shock in the full model. In some

cases, the set of restrictions necessary to eliminate the G-causality of transmission media may

be easily interpretable. I demonstrate one such case using a small-scale dynamic stochastic

general equilibrium (DSGE) model, in which the dynamic responses of all endogenous

variables with respect to demand, cost-push, and monetary policy shocks are determined

by the stickiness of interest rates in the Taylor rule.

An and Schorfheide (2007) specify a canonical New Keynesian DSGE model that

abstracts away from wage rigidities and capital accumulation. The model contains a

representative household, a single final goods-producing firm, a continuum of intermediate

goods producing firms, as well as monetary and fiscal authorities. The equilibrium of their
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model – linearized at the steady state – consists of the following six equations:

yt = Etyt+1 + gt − Etgt+1 −
1

τ
(rt − Etπt+1 − Etzt+1) (13)

πt = βEtπt+1 + κ(yt − gt) (14)

rt = ρrrt−1 + (1− ρr) (ψππt + ψy(yt − gt)) + εrt (15)

ct = yt − gt (16)

zt = ρzzt−1 + εzt (17)

gt = ρggt−1 + εgt . (18)

These are the Euler equation, Phillips curve, Taylor rule, aggregate accounting equality, law

of motion for TFP, and law of motion for government spending, respectively. Here yt, πt,

rt, ct, zt, and gt denote output, inflation, interest rate, consumption, TFP, and government

spending, respectively. All but one coefficient is a model primitive – κ is determined by the

following mapping:

κ =
τ(1− ν)

νϕπ2 , (19)

where τ is the constant relative risk aversion (CRRA) parameter, ν is the inverse elasticity

of demand, ϕ is the level of price stickiness, and π is the level of steady-state inflation. The

vector of innovations εt = (εzt, εgt, εzt)
′ is mean-zero iid.

I simplify the An-Schorfheide model and solve it analytically to yield a reduced-form VAR

similar to Morris (2014) . Consider the case in which TFP is iid, zt = εzt, and government

spending is zero at all times. In this restricted case, the model has the following three

equations:

rt = ρrrt−1 + (1− ρr) (ψππt + ψy(yt − gt)) + εrt (20)

yt = Etyt+1 + gt − Etgt+1 −
1

τ
(rt − Etπt+1 − εzt) (21)
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πt = βEtπt+1 + κ(yt − gt) . (22)

The solution of this model suggests the following functional form for the interest rate

equation:

rt = ϕrrrt−1 + drzεzt + drgεgt + drrεrt . (23)

We may define ρr = ϕrr and let εrt = drzεzt + drgεgt + drrεrt. Adding a cost-push shock, επt,

to the Phillips curve and defining εyt = (1/τ)εzt allows for the following expression for the

TE of the three-equation model:

rt = ρrrt−1 + εrt (24)

yt = Etyt+1 −
1

τ
(rt − Etπt+1) + εyt (25)

πt = βEtπt+1 + κyt + επt . (26)

By the method of undetermined coefficients, assuming Etyt+1 = ϕyrrt and Etπt+1 = ϕπrrt,

we obtain the following VAR(1) representation:


rt

yt

πt


︸ ︷︷ ︸

Yt

=


ρr 0 0

ϕyr 0 0

ϕπr 0 0


︸ ︷︷ ︸

Φ


rt−1

yt−1

πt−1

+


1 0 0

ϕyr

ρr
1 0

ϕπr

ρr
κ 1


︸ ︷︷ ︸

B


εrt

εyt

επt


︸ ︷︷ ︸

Ut

, (27)

where

ϕyr =

(
1− ρrβ

κ

)
ϕπr (28)

ϕπr = −
(
1

τ
· ρr
1− ρr

)(
1− ρrβ

κ
−
[
1

τ
· ρr
1− ρr

])−1

. (29)
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Notice that y and π do not G-cause the process in Eq. (27). Therefore, PT-IRFs that

condition on these two endogenous variables as the transmission medium (intermediate

variables) must equal to zero at all horizons. r is the only variable allowing for the dynamic

propagation of structural shocks via its G-causality – PT-IRFs that condition on r as the

intermediate variable equal their corresponding IRFs beyond the initial period. The G-

causality of r is determined by the structural parameter ρr and reduced-form parameters ϕyr

and ϕπr, both of which are scaled by ρr. If the interest rate stickiness in Eq. (15) is removed

by setting ρr = 0, then the G-causality of r is also shut off and all dynamic effects in the

model disappear. So, the PT-IRF of an endogenous variable in response to a shock with r as

the intermediate variable can be obtained by computing the response of the system under the

counterfactual ρr = 0, and subtracting it from the true IRF over a set horizon. Therefore,

the dynamic transmission of shocks via the interest rate occurs due to the stickiness of the

Taylor rule.4

To demonstrate the relationship between the theoretical model and empirics, I calibrate

the simplified model – parameter values are presented in Table 1. I compare the empirical

and theoretical PT-IRFs of all three endogenous variables in response to an innovation in

government spending (which affects the system through the monetary policy shock εr), with

the interest rate as the intermediate variable. The theoretical PT-IRFs are generated using

the above-mentioned counterfactual exercise involving ρr, whereas the empirical PT-IRF

confidence intervals are obtained by estimating a VAR(2) on 1,000 observations simulated

using the structural model.5 Figure 4 presents the results of this exercise.

The empirical PT-IRF confidence intervals presented in Figure 4 are equivalent to a

Lucas program-style structural counterfactual exercise that compares the responses to a

4One caveat in this example is that since ρr also scales the contemporaneous effects of monetary policy
shocks, the instantaneous effect of a monetary shock in the counterfactual model will not match that of the
true DGP. Notice that the contemporaneous effect of εr on π and y equals to −κ/τ and −1/τ , respectively,
given ρr = 0.

5I generate the empirical PT-IRFs using a VAR(2) instead of a VAR(1) to emulate minor model
misspecification.
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shock under two alternative structural parameterizations.6 Comparatively, the PT-IRF

confidence intervals are generated using transformations of reduced-form VAR parameter

estimates. These results are also equivalent to a policy counterfactual exercise in the style

of Sims and Zha (2006) that compares the effects of a government spending shock under two

alternative monetary policy rules. Unlike the Sims-Zha approach, the PT-IRF only leverages

the identification of the government spending shock and nothing else.

Parameter Description Value

β Discount factor 0.9975
ρr Taylor rule stickiness 0.75
τ CRRA 2
κ Composite parameter 0.33

Table 1: Simplified An-Schorfheide model parameter calibration following that of
Morris (2014).

Figure 4: Structural vs. empirical PT-IRF confidence intervals of all endogenous
variables in the simplified An-Schorfheide model in response to a government
spending shock, with the interest rate as the intermediate variable. Note:
The solid black line is the theoretical PT-IRF, produced using the ρr = 0
counterfactual exercise described earlier in Section 3. The dashed magenta lines are
the bootstrapped 95% confidence intervals for matching PT-IRFs obtained using a
VAR(2) estimated on a sample of 1,000 observations generated using the structural
model.

6The bootstrap algorithm used to generate these PT-IRF confidence intervals is presented in Section 5.
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4 Illustrative Empirical Applications

I demonstrate the empirical flexibility of the PT-IRF by applying it study oil price shock

transmission to inflation and output via monetary policy, as well as the transmission of

monetary policy shocks to output via credit supply.

4.1 Oil Price Shock Transmission to Output via Monetary Policy

Bernanke et al. (1997) use the Sims-Zha empirical counterfactual methodology to study the

contribution of the systematic portion of monetary policy to the effect of oil price shocks

on business cycles. Bernanke et al. construct a sequence of monetary policy shocks that

keeps the federal funds rate unchanged in the face of an oil price shock – intuitively, this is

equivalent to shutting down the systematic monetary policy response. They then compare

the dynamic responses of key macroeconomic variables under scenarios with and without

systematic monetary responses to conclude how much it contributes to the propagation of

oil price shocks. They find that a significant portion of the economic downturn following a

positive oil price shock can be attributed to systemic monetary policy responses, rather than

the direct impact of the oil price shock. In other words, Bernanke et al. find that monetary

policy amplifies the contractionary effects of an oil price shock.

Kilian and Lewis (2011) carry out a similar analysis using a modified counterfactual

framework – they propose constructing a sequence of monetary policy shocks that offset the

contemporaneous and lagged effects of including the real price of oil in the policy reaction

function. Kilian and Lewis argue that this alternative exercise yields a more accurate picture

of the contributions of systematic monetary policy to oil price shock propagation. Their

results challenge the notion that systematic monetary policy responses to oil price shocks

have been a major source of aggregate fluctuations in the U.S. economy.
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I replicate the VAR estimated by Kilian and Lewis (2011) to study the transmission of oil

price shocks to output and inflation via monetary policy using PT-IRFs. The model consists

of the following five endogenous variables, constructed in precisely the same way as in Kilian

and Lewis (2011): (1) the percentage change in the real price of imported commodities; (2)

the percentage change in the real price of imported crude oil; (3) the Chicago Fed National

Activity Index (CFNAI) measure of US real activity; (4) the U.S. CPI inflation rate; and (5)

the federal funds rate (FFR). The sample runs from May 1967 until July 1987. All data are

obtained from the replication package for Chen (2023), which successfully reproduces the

results of Kilian and Lewis (2011). The oil price shock in this VAR is recursively-identified

as the shock corresponding to the real price of imported crude oil variable (the second shock

yielded by the Cholesky decomposition of the error covariance matrix). This identification

scheme exploits the conventional assumption that oil prices are predetermined with respect

to domestic macroeconomic aggregates.

Figure 5 shows the net dynamic response of output and inflation (black lines), matching

those of Kilian and Lewis (2011). The same Figure also shows the PT-IRFs representing

the response of output and inflation to oil price shocks via their propagation through the

FFR (dashed lines) – these capture the contributions of monetary policy to the dynamic

transmission of oil price shocks to business cycles. Although the majority of confidence

intervals contain zero, the signs of point estimates of both PT-IRFs shown in Figure 5

generally match the directions of their respective IRFs at most horizons. This result loosely

suggests that monetary policy amplifies the effects of oil price shocks on the macroeconomy,

as argued by Bernanke et al. (1997). However, it is once again worth noting that PT-IRFs

do not necessarily capture the same notion of “dynamic transmission” as does the Sims and

Zha (2006) counterfactual method, though there can exist an equivalence in special cases

such as the one discussed in Section 3.
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Figure 5: Responses of output and inflation to a positive real oil price shock,
respectively. Note: The solid black lines represent IRs, while the dashed lines
are the PT-IRs of the two response variables with the federal funds rate as
the intermediate variable. The magenta bands are bootstrapped 68% PT-IRF
confidence using 1,000 runs.

4.2 Monetary Transmission to Output via Credit Supply

The credit channel of monetary transmission refers to the mechanism through which changes

in monetary policy affect the macroeconomy by influencing the supply and demand for

credit. The credit channel consists of the bank lending and balance sheet (sub-)channels

(Bernanke and Gertler, 1995). The bank lending channel (BLC) describes the influence of

monetary policy on banks’ ability to supply loans, which affects macroeconomic activity

beyond the direct effects of monetary policy on interest rates (Bernanke and Blinder, 1988).

The balance sheet channel (BSC) describes changes in credit demand brought on by changes

in creditworthiness and borrowing costs due to monetary policy actions. Like the BLC, the

BSC produces indirect effects on macroeconomic activity beyond the direct interest rate
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channel.

In this illustrative application, I study the credit channel by applying PT-IRFs to the

VAR used by Bu et al. (2021). Gilchrist and Zakraǰsek (2012) develop the excess bond

premium (EBP) index, an increase in which is associated with a contraction in the supply of

credit. Bu et al. (2021) include the EBP as an endogenous variable in a monthly VAR, which

they use to examine the dynamic effects of (externally-identified) monetary policy shocks on

key macroeconomic variables. Their justification for including the EBP in the VAR focused

largely on its strong predictive power for future macroeconomic activity. I replicate the VAR

and monetary policy shock identification scheme used by Bu et al. (2021), and estimate the

transmission of unanticipated changes in monetary policy to output via changes in credit

supply using the EBP as the proxy intermediate variable.7

The model consists of the following five endogenous variables: (1) the cumulated Bu-

Rogers-Wu (BRW) externally-identified monetary policy shock series; (2) log-transformed

industrial production; (3) log-transformed consumer price index for all items in the U.S; (4)

log-transformed producer price index for all commodities; and (5) the EBP. The sample runs

from January 1994 until December 2019. The monetary policy shock is identified recursively

as having a contemporaneous effect on all endogenous variables in the system – in other

words, it is the innovation to the BRW series (ordered first in the system).

The resulting PT-IRF point estimates and confidence intervals are presented in Figure

6. Notice that the PT-IRF point estimates have the same sign as the IRF of a monetary

tightening on output at all but the last couple periods over a 30-month horizon. Furthermore,

notice that some of the point estimates are statistically significant at the 68% level when

tested separately. Therefore, if the EBP is indeed a good proxy of variation in credit supply,

then these findings show aggregate evidence of monetary transmission through the credit

7Nikolaishvili (2024) applies PT-IRFs to study the transmission of monetary policy shocks to output via
community versus noncommunity bank lending in a factor-augmented VAR with hierarchical bank lending
factors.
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channel amplifying the effect of monetary policy on economic activity. This finding is in line

with the theoretical foundation for the supply-side credit channel, which hypothesizes that

micro-level frictions in lenders’ ability to issue credit amplify the effects of monetary shocks.8

Figure 6: Response of industrial production to an unexpected monetary tightening.
Note: The solid black line is the IR, the dashed line is a PT-IR representing the
transmission of the monetary shock via the EBP (proxy for credit supply), and the
magenta bands are bootstrapped 68% PT-IRF confidence using 1,000 runs.

5 Estimation and Inference

PT-IRF point estimates, much like those of a VAR-based IRF, can be obtained by estimating

a VAR and mapping its parameters to the PT-IRF.9 A model that explicitly approximates

the dynamic structure and G-causality of the transmission media, such as a VAR, is

necessary to estimate PT-IRFs. Non-parametric or semi-parametric alternatives like local

projections (LPs) cannot be used to generate point estimates, unless realizations of the

counterfactual DGP in which the G-causality of the transmission media is shut off can

be either directly observed or perfectly inferred using available data. On the other hand,

8See Bernanke et al. (1996) for a seminal treatment of the topic of macrofinancial amplification.
9This approach applies to nonlinear VAR PT-IRFs as well. For example, in the case of time-varying

parameter (TVP) VARs, PT-IRF mappings can be done at different sample periods of interest.
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confidence intervals for a PT-IRF may be obtained using both parametric methods like VARs

and semi-parametric ones like LPs. Frequentist VAR-based PT-IRF inference can be done

via bootstrapping, such that an accompanying PT-IRF is generated using the synthetically-

estimated VAR parameters at each step of the bootstrap.10 Refer to Algorithm 1 for a

standard VAR-based recursive-design PT-IRF bootstrapping procedure based on Runkle

(1987). Bias adjustment and wild bootstrap modifications for the given procedure to account

for possible biases and heteroskedasticity in the errors are straight-forward.11

Algorithm 1 Bootstrap Procedure for PT-IRF VAR-based Confidence Intervals

1: Estimate a VAR and save its parameters and residuals.
2: Set the initial conditions using the first p observations, where p is the number of lags.
3: for each bootstrap iteration do
4: Generate new series by bootstrapping:
5: for each replication do
6: Select a residual at random (from the original series of residuals).
7: Use the selected residual and past observations to generate a new observation.
8: Repeat to form a complete bootstrapped series.
9: end for
10: Re-estimate the VAR parameters using the bootstrapped series.
11: Compute IR− ĨR using the bootstrapped VAR parameters and store the result.
12: end for
13: Compute the empirical confidence intervals from a sufficiently large sample of stored

PT-IRFs.

LP-based PT-IRF confidence intervals may also be bootstrapped with the use of synthetic

samples simulated using an empirical VAR. At each iteration of the bootstrap, LPs are used

to estimate the net response, as well as the response of the counterfactual DGP in which the

G-causality of the transmission media is shut off. Refer to Algorithm 2 for a standard LP-

based recursive-design PT-IRF bootstrapping procedure that combines elements of Runkle

(1987) and the lag-augmented LP framework of Montiel Olea and Plagborg-Møller (2021).

Once again, various modifications to account for bias and deviations from the identical and

10Similarly, Bayesian VAR-based PT-IRF posterior distributions can be obtained by mapping the VAR
parameter estimates to the PT-IRF at each step of the sampler. This is possible since PT-IRFs are mappings
of VAR parameters.

11For instance, popular bias-correcting and heteroskedasticity-robust bootstrap algorithms developed in
Kilian (1998) and Gonçalves and Kilian (2004), respectively, can easily accommodate the PT-IRF framework.
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independent distribution of the errors are easy to make.

Algorithm 2 Bootstrap Procedure for PT-IRF LP-based Confidence Intervals

1: Estimate a VAR and save its parameters and residuals.
2: Set the initial conditions using the first p observations, where p is the number of lags.
3: for each bootstrap iteration do
4: Generate new series by bootstrapping:
5: for each replication do
6: Select a residual at random (from the original series of residuals).

7: Generate a new obs. for both Y and Ỹ using the selected residual and past obs.
8: Repeat to form complete bootstrapped series of Y and Ỹ .
9: end for
10: Estimate IR using Y and ĨR using Ỹ .
11: Compute IR− ĨR and store the result.
12: end for
13: Compute the empirical confidence intervals from a sufficiently large sample of stored

PT-IRFs.

I test the performance of the VAR estimator in a Monte Carlo simulation study. I use

the VAR estimated in Section 4.1 as the population DGP with which I simulate a large

number of samples with a realistic range of samples sizes. For each sample, I estimate

and generate 95% confidence intervals for the PT-IRF measuring the effect of an oil price

shock on output via the FFR (see top panel of Figure 5). For each sample size, I check the

performance of the estimator by computing the average bias, variance, and mean squared

error (MSE) at each horizon using correctly-specified and misspecified VAR models. The

results of this exercise are presented in Figure A.1. The same Figure also shows the coverage

rate of the bootstrapped confidence intervals for each combination of sample size and model

specification. The coverage of the estimator seems to deteriorate for longer horizons relative

to the sample size for under-specified VARs, which is not the case for correctly-specified and

over-specified models. Overall, according to the evidence yielded by this simulation study,

the VAR estimator appears consistent and the empirical coverage rate matches the nominal

coverage probability when the VAR model is not under-specified.
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6 Concluding Remarks

The PT-IRF can be a useful tool for quantifying transmission channels of a wide variety of

economic shocks. Although the applications in this paper involve linear VARs, PT-IRFs can

be applied to arbitrarily nonlinear settings, such as TVP-VARs. Furthermore, the ability

of PT-IRFs to accommodate multiple intermediate variables allows for the simultaneous

quantification of potentially overlapping contributions of multiple transmission channels.12

Future work can examine the properties of VAR vs. LP-based methods of conducting

inference on PT-IRF estimates. For example, one may be more efficient than the other at

certain horizons and/or given certain levels of persistence. Finally, PT-IRFs can be used to

study dynamic transmission mechanisms both empirically and theoretically in fields outside

of macroeconomics and macrofinance that rely on dynamic modeling.

12Nikolaishvili (2024) studies the contribution of comovement among community versus noncommunity
banks’ lending to the transmission of monetary policy shocks. The PT-IRFs in this study simultaneously
condition on multiple lending factors for each bank type as intermediate variables / transmission media.
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A Appendix

Figure A.1: Monte Carlo simulation analysis of the VAR estimator based on the
Kilian-Lewis VAR as the population DGP. The nominal coverage probability is 95%.
The simulation consists of 1000 samples for each given sample size.
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